
Opening up architectures of software-

intensive systems
A first prototype implementation

P. Charland
D. Dessureault
D. Ouellet
M. Lizotte
DRDC Valcartier

Defence R&D Canada – Valcartier
Technical Memorandum

DRDC Valcartier TM 2006-781
November 2007

Opening up architectures of software-
intensive systems
A first prototype implementation

P. Charland
D. Dessureault
D. Ouellet
M. Lizotte
DRDC Valcartier

Defence R&D Canada - Valcartier
Technical Memorandum
DRDC Valcartier TM 2006-781
November 2007

Author

Philippe Charland

Approved by

Guy Turcotte

Head System of Systems

Approved for release by

Christian Carrier

Chief Scientist

© Her Majesty the Queen as represented by the Minister of National Defence, 2007

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2007

Abstract

Although there already exist tools to assist in understanding the behavior of software
systems when no complete and consistent design models are available, these tools
generate a large volume of information. One approach to deal with this problem is
information hiding. This technical memorandum presents a prototype which
implements this technique to reverse engineer dynamic models from Java software
systems. These models are represented using Unified Modeling Language (UML)
sequence diagrams. Such diagrams show the interactions, in terms of messages or
information transfers, between the operational nodes of a system, arranged in a time
sequence. Information hiding is achieved by reconstructing the sequence diagrams at
various levels of abstraction. The interactions between the operational nodes of a
system can be displayed at a low level, i.e., object level. However, related operational
nodes can also be regrouped into higher level structures, i.e., packages. The proposed
approach was implemented in Eclipse, an extensible integrated development
environment (IDE). The objective is to complement the behavioral views reverse
engineered by the implemented prototype with structure views generated by other
tools.

Résumé

Bien qu’il existe déjà des outils pour aider à comprendre le fonctionnement de
systèmes logiciels lorsqu’aucun modèle de conception complet et cohérent n’est
disponible, il reste que ces outils génèrent une grande quantité d’information. Une des
approches pour résoudre ce problème est le masquage d’information. Ce mémorandum
technique présente un prototype qui implante cette technique pour faire la rétro-
ingénierie de modèles dynamiques à partir de systèmes logiciels développés en Java.
Ces modèles sont représentés sous forme de diagrammes de séquence UML (Unified
Modeling Language). De tels diagrammes montrent les interactions, en termes de
messages ou de transferts d'information, disposées de façon séquentielle, entre les
nœuds opérationnels d'un système. Le masquage d’information est accompli en
reconstruisant les diagrammes à différents niveaux d’abstraction. Les interactions entre
les nœuds opérationnels d’un système peuvent être affichées à un bas niveau, c.-à-d. au
niveau des objets. Cependant, les nœuds opérationnels rattachés peuvent aussi être
regroupés dans des structures de plus haut niveau, c.-à-d. des paquetages. L’approche
proposée a été implantée dans Eclipse, un environnement de développement intégré
(EDI) extensible. L’objectif est de compléter les vues de fonctionnement obtenues du
prototype par rétro-ingénierie par des vues de structures générées par d’autres outils.

DRDC Valcartier TM 2006-781 i

This page intentionally left blank.

ii DRDC Valcartier TM 2006-781

Executive Summary

To understand an existing object-oriented software system, information relating to its
structure and behavior is required. When there is no complete nor consistent design
models available, one has to fall back on reverse engineering to retrieve as much
information as possible through static and dynamic analysis. Capacities to reverse
engineer the static structure of object-oriented systems are already present in several
Computer-Aided Software Engineering (CASE) tools, although some issues still need
to be addressed. Reverse engineering the behavior of an object-oriented system is even
more difficult than understanding its structure, due to the specific characteristics of the
object-oriented paradigm, such as inheritance, polymorphism and dynamic binding.
These peculiarities make it difficult to comprehend the system behavior using code
analysis only. As a result, dynamic models must be extracted by means of dynamic
analysis. Even though several approaches have been proposed for the extraction of
dynamic models for object-oriented systems, one problem faced is the large volume of
information generated in the execution traces.

This technical memorandum presents a prototype developed by the members of the
Opening up Architectures of Software-Intensive Systems (OASIS) project to address
the trace explosion problem through information hiding. This prototype, implemented
as plug-ins in the Eclipse Integrated Development Environment (IDE), allows reverse
engineering dynamic models from Java software systems. These models are
represented using Unified Modeling Language (UML) sequence diagrams. Such
diagrams show the interactions, in terms of messages or information transfers, between
the operational nodes of a system, arranged in a time sequence. Information hiding is
achieved by reconstructing the sequence diagrams at various levels of abstraction. The
interactions between the operational nodes of a system can be displayed at a low level,
i.e., object level. However, related operational nodes can also be regrouped into higher
level structures, i.e., packages. This level allows a considerable reduction of the
diagrams size, as the messages exchanged between objects of the same package are
encapsulated in the latter and not displayed in the diagram. Also, the package level
assists in mapping system functionalities to architectural elements, something which is
essential when trying to understand an unfamiliar system at the architectural level.

Following the implementation of this prototype, another one, with an improved set of
functionalities as well as additional views, should be developed to assist the Canadian
Forces (CF) in recovering and comprehending the architectures of their legacy
software systems. Ideally, once this prototype is developed, a qualitative study should
be performed. Its objective would be to assess the added value of the OASIS
architecture recovery and comprehension prototype on the understanding of
participants.

Charland, P., Dessureault, D., Ouellet, D., Lizotte, M. 2007. Opening up architectures of
software-intensive systems: A first prototype implementation. DRDC Valcartier TM
2006-781. Defence R&D Canada - Valcartier.

DRDC Valcartier TM 2006-781 iii

Sommaire

Pour comprendre un système logiciel orienté-objet existant, des informations
concernant sa structure et son fonctionnement sont requises. Lorsqu’aucun modèle de
conception complet et cohérent n’est disponible, des techniques de rétro-ingénierie
telles que l’analyse statique et dynamique doivent être utilisées afin de récupérer le
plus d’information possible. Bien que plusieurs outils CASE (Computer-Aided
Software Engineering) offrent des capacités pour faire la rétro-ingénierie des structures
statiques de systèmes orientés-objet, certains problèmes persistent et doivent être
abordés. La rétro-ingénierie du fonctionnement d’un système orienté-objet est encore
plus difficile que la compréhension de sa structure en raison des caractéristiques
particulières liées au paradigme orienté-objet, tel que l’héritage, le polymorphisme et
la liaison dynamique. Celles-ci rendent la compréhension du fonctionnement difficile
en n’utilisant que l’analyse de code. Par conséquent, des modèles dynamiques doivent
être extraits au moyen de l’analyse dynamique. Bien que plusieurs approches aient été
proposées pour l’extraction de modèles dynamiques pour de tels systèmes, la grande
quantité d’information générée dans les traces d’exécution reste un problème de taille.

Ce mémorandum technique présente un prototype, développé par les membres du
projet intitulé “Ouverture d’Architectures de Systèmes Informatisés Significativement”
(OASIS), qui aborde le problème d’explosion de traces en utilisant le masquage
d’information. Implanté sous la forme de plugiciels dans l’Environnement de
Développement Intégré (EDI) Eclipse, ce prototype permet de faire la rétro-ingénierie
de modèles dynamiques à partir de systèmes logiciels Java. Ces modèles sont
représentés sous la forme de diagrammes de séquence UML (Unified Modeling
Language). De tels diagrammes montrent les interactions, en termes de messages ou de
transferts d'information, disposées de façon séquentielle, entre les nœuds opérationnels
d'un système. Le masquage d’information est accompli en reconstruisant les
diagrammes à différents niveaux d’abstraction. Les interactions entre les nœuds
opérationnels d’un système peuvent être affichées à un bas niveau, c.-à-d. au niveau
des objets. Cependant, les nœuds opérationnels rattachés peuvent aussi être regroupés
dans des structures de plus haut niveau, c.-à-d. des paquetages. À ce niveau
d’abstraction, la taille des diagrammes est réduite considérablement. Les messages
échangés entre les objets d’un même paquetage sont alors encapsulés dans ce dernier
et ne sont pas affichés. De plus, le niveau paquetage aide à associer les fonctionnalités
du système à leurs éléments architecturaux, ce qui est essentiel lors de la
compréhension d’un système inconnu sur le plan de l’architecture.

iv DRDC Valcartier TM 2006-781

À la suite de l’implantation de ce prototype, il est prévu d’en développer un second
comportant un ensemble de fonctionnalités améliorées ainsi que des vues
additionnelles. Cette nouvelle version sera mieux conçue pour aider les Forces
canadiennes (FC) à récupérer et comprendre les architectures de leurs systèmes
logiciels hérités. Idéalement, une étude qualitative devrait être menée afin d’évaluer la
valeur ajoutée du prototype de récupération d’architectures OASIS sur la
compréhension des participants.

Charland, P., Dessureault, D., Ouellet, D., Lizotte, M. 2007. Opening up architectures of
software-intensive systems: A first prototype implementation. DRDC Valcartier TM
2006-781. R&D pour la défense Canada - Valcartier.

DRDC Valcartier TM 2006-781 v

This page intentionally left blank.

vi DRDC Valcartier TM 2006-781

DRDC Valcartier TM 2006-781 vii

Table of Contents

Abstract/Résumé.. i

Executive Summary... iii

Sommaire... iv

Table of Contents.. vii

List of Figures.. ix

List of Tables .. x

1. Introduction ... 1

2. OASIS v1 Functionalities.. 3

3. UML Sequence Diagrams ... 6

4. Reverse Engineering of Sequence Diagrams... 9
4.1 Static Analysis .. 9

4.1.1 Omondo EclipseUML ... 9
4.1.2 Sequence Diagram Viewer NetBeans Module 11
4.1.3 Limitations of Static Analysis ... 11

4.2 Dynamic Analysis .. 12
4.2.1 J2U... 12
4.2.2 The Eclipse TPTP Project ... 13
4.2.3 Limitations of Dynamic Analysis.. 15

5. Extraction of Dynamic Views in OASIS v1.. 16
5.1 Instrumentation... 17
5.2 Logging Strategy .. 18
5.3 Visualization... 19

5.3.1 Object Level Sequence Diagrams ... 19
5.3.2 Package Level Sequence Diagrams... 20
5.3.3 Method Collapsing .. 21

5.3.4 Searching ... 22
5.3.5 Filtering ... 24

5.4 Domain Knowledge Definition and Exploitation ... 26

6. OASIS v1 Implementation .. 29
6.1 Eclipse .. 29
6.2 Infrastructure and Technologies ... 30
6.3 Bytecode Instrumentation... 31

6.3.1 JRat.. 31
6.3.2 The Eclipse TPTP Project ... 33
6.3.3 XRat File Format... 33

6.4 SEQUENCE ... 34
6.5 Integrating SEQUENCE into Eclipse... 35
6.6 Additional Libraries and Plug-ins... 36

6.6.1 Metrics... 36
6.6.2 Omondo EclipseUML ... 38
6.6.3 The Eclipse JDT Subproject .. 39
6.6.4 XSD... 39
6.6.5 Log4j ... 40

7. Conclusions and Future Work ... 41

8. References ... 42

List of Acronyms.. 47

Distribution List.. 49

viii DRDC Valcartier TM 2006-781

List of Figures

Figure 1. OASIS Functional Architecture .. 3

Figure 2. Rational Quantify Call Graph ... 4

Figure 3. UML Sequence Diagram [14] ... 7

Figure 4. Kinds of Messages in UML [15]... 8

Figure 5. Sequence Diagram Generated by EclipseUML... 10

Figure 6. Source Code of the main Method of the JUnit TestRunner Class............................. 10

Figure 7. Sequence Diagram Generated by the Sequence Diagram Viewer 11

Figure 8. Sequence Diagram Generated by J2U... 13

Figure 9. Sequence Diagram Generated by the Eclipse TPTP Project 14

Figure 10. Sequence Diagram with Lifelines and Messages Collapsed 14

Figure 11. Extraction of Dynamic Views in OASIS v1 ... 16

Figure 12. Sample Log File .. 18

Figure 13. Sequence Diagram Generated by OASIS v1... 19

Figure 14. Object Level Sequence Diagram... 20

Figure 15. Package Level Sequence Diagram .. 21

Figure 16. Sequence Diagram with Method Expanded .. 22

Figure 17. Sequence Diagram with Method Collapsed .. 22

Figure 18. Search Dialog Box .. 23

Figure 19. Eclipse Search View ... 23

Figure 20. Sequence Diagram with a Method Call Highlighted... 24

Figure 21. Sequence Diagram without Filtering Applied... 25

Figure 22. Sequence Diagram with Filtering Applied.. 25

Figure 23. Domain Knowledge Viewer.. 27

DRDC Valcartier TM 2006-781 ix

Figure 24. Domain Knowledge Viewer for a Particular Execution Trace................................ 27

Figure 25. Domain Knowledge XML File ... 28

Figure 26. Eclipse User Workbench... 30

Figure 27. OASIS v1 Infrastructure and Technologies .. 30

Figure 28. Java Source Code .. 31

Figure 29. Java Source Code Instrumented Using JRat.. 32

Figure 30. Sample XRat File .. 33

Figure 31. SEQUENCE.. 35

Figure 32. Eclipse View Provided by the Metrics Plug-in ... 37

Figure 33. Package Diagram Reverse Engineered by EclipseUML... 39

List of Tables

Table 1. Kinds of Actions in UML [13] ... 7

Table 2. XRat <call> Tag Attributes... 34

x DRDC Valcartier TM 2006-781

1. Introduction

Over the years, the needs of the Canadian Forces (CF) for systems interoperability
have significantly increased. For example, to improve the automation of the
Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance (C4ISR) process, a large number of software intensive systems must
interact together to handle a massive amount of information. The CF also require
systems interoperability when they collaborate with allied nations to achieve common
objectives.

As the CF demand greater systems interoperability, their software architects need
techniques and tools to understand the architecture of existing systems and make them
interoperate in order to build a system of systems (SoS). A SoS is an assemblage of
components which individually may be regarded as systems and which possess two
additional properties: operational and managerial independence of the components [1].
Each component system must be able to operate independently if the SoS is
disassembled. Furthermore, even though the component systems are separately
acquired and integrated, they maintain a continuing operating existence independent of
the SoS. An example of a SoS is a system built for a coalition operation, where each
participating nation brings its own operational planning system.

Before existing systems can interoperate, their architectures first need to be
understood. The architecture of a system can be defined as the structure of its
components, their interrelationships, as well as the principles and guidelines governing
their design and evolution over time [2]. However, understanding the architecture of
systems can prove to be quite a complex task. These systems have most probably
undergone several code revisions without a real concern about maintaining their
architectural design documentation up to date [3]. As a result, architecture recovery
has to be performed to regenerate coherent abstractions and guide architects during
their comprehension task. Architecture recovery can be described as the process of
retrieving up-to-date architectural information from existing source code artefacts. The
rational of system architectural recovery is to provide reasoning behind the software
architecture or high-level organization of a system.

To support the effort of developing methodologies, techniques, and tools needed for
the recovery and comprehension of existing systems’ architecture, the SoS section of
Defence Research and Development Canada (DRDC) Valcartier started a project
called Opening up Architectures of Software-Intensive Systems (OASIS) [4]. Its
objective is to develop technical solutions in order to reduce the time needed to
comprehend systems to be integrated into a SoS.

In a previous phase of the OASIS project, a state-of-the-art survey of the current
techniques and tools for architecture recovery and comprehension was carried out [5].
Following this survey, a qualitative study was conducted. Its objective was to assess
the added value of a selected subset of the tools previously identified on the
understanding of participants performing high-level comprehension tasks on large-

DRDC Valcartier TM 2006-781 1

scale military systems [6]. Using the results obtained as part of the previous two
project accomplishments, a functional architecture of the ideal tool for system
architecture recovery and comprehension was conceptualized [7].

The present technical memorandum describes the first OASIS prototype. This
prototype implements a selected subset of the functional architecture. It was developed
in Java as Eclipse [8] plug-ins. Eclipse is an extensible open source integrated
development environment (IDE). The remainder of this technical memorandum is
organized as follows: Section 2 presents the functionalities which were implemented
as part of OASIS v1, the most important one being the generation of sequence
diagrams. Section 3 and 4 respectively explains the concept of sequence diagrams in
detail as well as the current approaches to reverse engineer them from existing
software systems. Section 5 describes the technique developed as part of OASIS v1 to
visualize sequence diagrams at the architectural level. In Section 6, the implementation
of OASIS v1 is discussed. Finally, Section 7 provides conclusions and future work.

2 DRDC Valcartier TM 2006-781

2. OASIS v1 Functionalities

The figure below shows a visual representation of the OASIS functional architecture.
As indicated, it consists of the following subsystems: Repositories, Data Access,
Information Management, Fact Extraction, Analysis, Synthesis, Visualization,
Documentation Generation, Comprehension Process, and Graphical User Interface.
For a more detailed description of each of these subsystems, please refer to [7]. In the
diagram, the elements highlighted in yellow were either implemented or partially
implemented as part of OASIS v1.

Figure 1. OASIS Functional Architecture

For the first implementation of the OASIS prototype, it was decided to mainly focus
on the extraction, analysis, and visualization of dynamic information, i.e., information
which is obtained by observing the system during execution [9]. This choice was
motivated by the fact that static comprehension support through tools and techniques is
a maturing research area, with the availability of a wide range of tools supporting the
recovery process for a variety of systems and environments [5]. However, with an
increasing part of today’s legacy software systems being object-oriented and/or
distributed, these tools are unable to analyze constructs such as inheritance,
polymorphism, as well as dynamic binding and which result in the fact that the exact
behavior of a system is only known at runtime.

DRDC Valcartier TM 2006-781 3

Another reason why it was decided to concentrate on dynamic information for
OASIS v1 is because the graphical descriptions of software architectures generated by
current tools often focus on static calls and data relationships gathered by parsing the
source code. These types of architecture graphs can exhibit extremely high
connectivity and possess little contextual information with respect to the nature of the
relationships between components [5]. Some existing tools support dynamic
visualization and structure querying, but at the object level only. Therefore, the
visualization they provide is hard to scale and interpret for large and distributed
applications [5].

The latter findings were confirmed by the qualitative study previously conducted in
[6]. One of the observations which were drawn from the results was that the biggest
drawback of the selected tools was that they did not always provide the appropriate
viewpoints, abstraction levels, and filters needed to understand the architecture of an
application. The participants were quickly swamped by a mass of irrelevant low level
details. This was especially true in the case of Rational PureCoverage and Quantify
[10], the two dynamic analysis tools used as part of the study. Most of the information
provided by them was at the method level. Figure 2 below shows an example where
the participants were overwhelmed by the large amount of information displayed in a
Rational Quantify call graph.

Figure 2. Rational Quantify Call Graph

4 DRDC Valcartier TM 2006-781

The application used for the previous example was the Human Computer Interface
(HCI) component of Concept Analysis and Simulation Environment for Automatic
Target Tracking and Identification (CASE ATTI). CASE ATTI [11] is a multi-sensor
data fusion simulation test bed used to analyze the performance of various multi-
sensor data fusion architectures and algorithms for the Canadian Patrol Frigate (CPF).
It was developed by the Decision Support Systems Section at DRDC Valcartier using
the Java programming language. It consists of 74,000 lines of source code contained in
565 classes.

The functionalities implemented as part of the OASIS v1 prototype serve to record the
execution of systems developed in Java. Once recorded, the behavior of a system can
then be visualized as a sequence diagram. The reason it was decided to display the
execution of systems as sequence diagrams is because they are among the crucial
diagrams used during the analysis and design of object-oriented systems. They are
used to identify object responsibilities and interactions associated with each use case
[12]. Stated briefly, a sequence diagram shows the interactions, in terms of messages
or information transfers, between the operational nodes of a system, arranged in a time
sequence. However, instead of displaying these interactions at a low level only, i.e.,
object level, OASIS v1 allows regrouping of related operational nodes into higher
level structures, i.e., packages. This reduces the cognitive burden and, as a result,
improves the software comprehension process, since it allows information to be
filtered out. Therefore, a person trying to understand a system has less information to
search through and can concentrate on the system's high level structures as well as the
interactions between them. This feature of OASIS v1 is particularly useful in the case
of large-scale systems.

In addition to the functionalities presented above, OASIS v1 provides a suite of
metrics which allows analyzing a software system for the recovery and comprehension
of its architecture. Also, it integrates a model driven development tool for the reverse
engineering of structure diagrams such as UML class and package diagrams.
Furthermore, it offers the functionality to define the domain model of a software
system. This was believed important to implement, as the human-oriented recognition
process depends heavily on an a priori contextual knowledge of the application
domain, its entities, and their relationships. Using this functionality, OASIS v1 allows
users to map this vocabulary of terms to an execution trace to determine which entities
were executed by a particular run of the system and to map source code elements to
their corresponding concept of the application domain.

DRDC Valcartier TM 2006-781 5

3. UML Sequence Diagrams

The main functionality of OASIS v1 is the generation of sequence diagrams based on
execution traces. This section details the concept of a sequence diagram.

The Unified Modeling Language (UML) is a graphical language to visualize, specify,
construct, and document the artifacts of a software-intensive system [13]. In UML, one
way to model the dynamic aspects of a system is to use sequence diagrams. A
sequence diagram shows a set of objects and the messages sent and received by those
objects. The objects are typically named or anonymous instances of classes, but can
also represent instances of other things (e.g., collaborations, components, and nodes)
[13]. As shown in Figure 3 on the next page, sequence diagrams emphasize the time
ordering of messages.

Sequence diagrams also model the lifelines of objects. An object’s lifeline, depicted as
a vertical dashed line, represents the existence of an object over a period of time. The
objects that will be in existence for the whole duration of the interaction are aligned at
the top. Their lifelines are drawn from the top to the bottom of the diagram. Objects
can also be created and destroyed during an interaction. In the former case, their
lifelines start with the receipt of the message stereotyped as create. In the latter case,
their lifelines end with the receipt of the message stereotyped as destroy, and are
given the visual cue of a large X, marking the end of their lives [13].

Another concept present in sequence diagrams is the focus of control. The focus of
control is a thin rectangle that shows the period of time during which an object is
performing an action, either directly or through a subordinate procedure [13]. The top
of the rectangle is aligned with the start of the action and the bottom, with its
completion. The latter can also be marked by a return message. The nesting of focus of
control caused either by recursion, a call to a self-operation, or by the call-back from
another object, is represented by stacking another focus of control slightly to the right
of its parent. This can be repeated to an arbitrary depth.

6 DRDC Valcartier TM 2006-781

Figure 3. UML Sequence Diagram [14]

As previously mentioned, sequence diagrams introduce all the objects which work
together to fulfill an action, as well as the messages dispatched from one object to
another. When a message is passed, the resulting action is an executable statement,
which forms an abstraction of a computational procedure [13]. In UML, the following
kinds of actions can be modeled:

Table 1. Kinds of Actions in UML [13]

ACTION DESCRIPTION

Call Invokes an operation on an object. An object can send a message to itself,
resulting in the local invocation of an operation.

Return Returns the value to the caller.

Send Sends a signal to an object.

Create Creates an object.

Destroy Destroys an object.

DRDC Valcartier TM 2006-781 7

Figure 4 below provides a visual distinction among the different kinds of UML
messages. The most common kind of messages modeled in sequence diagrams is the
call, where one object invokes an operation of another or same object.

destroy

return

create

call

destroy

return

create

call

Figure 4. Kinds of Messages in UML [15]

8 DRDC Valcartier TM 2006-781

4. Reverse Engineering of Sequence Diagrams

UML is the de facto standard for object-oriented software development [16]. Its
models can be directly connected to a variety of programming languages such as C++
and Java [13]. This mapping allows forward engineering, i.e., the generation of code
from a UML model into a programming language. However, the reverse is also
possible: a model can be reconstructed from an implementation back into UML. This
is especially useful when the source code of a software system is the only
documentation available, as in the case of the systems targeted by the OASIS research
project. In these circumstances, to completely understand the legacy system,
information regarding its structure, behavior, and internal states has to be extracted
from the source code or its execution, and must be represented in the form of an
abstract model such as UML. This process of analyzing the source code of a software
system to represent it at a higher level of abstraction, by extracting architectural
artifacts from the code, is called reverse engineering [16].

Reverse engineering sequence diagrams is possible. This section presents an overview
of some of the existing tools available for the reverse engineering of Java source code
back to sequence diagrams. These tools are either based on static or dynamic analysis
of the system under study.

4.1 Static Analysis

Static analysis is performed by analyzing the source code of a software system without
executing it [9]. In this section, two tools which perform static reverse engineering of
sequence diagrams are presented: EclipseUML [17] and the Sequence Diagram
Viewer NetBeans module [18]. Note that there exist other tools which can statically
reverse engineer sequence diagrams such as Borland Together [19] and the NetBeans
UML Modeling module [20]. The reason those are not presented in this document is
because their functionalities are very similar to the ones of the tools covered.

4.1.1 Omondo EclipseUML

EclipseUML Studio is an Eclipse plug-in developed by the Omondo
company. It is a model driven development solution based on UML and the
Eclipse Modeling Framework (EMF). It also offers reverse engineering
functionalities. Among them is the capacity to reverse engineer the sequence
diagram of a method, as illustrated in Figure 5. This example shows the
corresponding sequence diagram for the main method of JUnit’s
TestRunner class displayed in Figure 6. JUnit [21] is a Java framework for
unit testing.

The major limitation of sequence diagrams reverse engineered by
EclipseUML is that they do not model the children calls of the selected
method. For example, in Figure 5, it is not shown that the constructor of the

DRDC Valcartier TM 2006-781 9

class BaseTestRunner is called by the constructor of the class
TestRunner. Another limitation is that the generated sequence diagrams
cannot be visualized at an abstract level higher than the object level.

Figure 5. Sequence Diagram Generated by EclipseUML

Figure 6. Source Code of the main Method of the JUnit TestRunner Class

10 DRDC Valcartier TM 2006-781

4.1.2 Sequence Diagram Viewer NetBeans Module

NetBeans [22] is an open source IDE supporting the development of Java
applications. It can be extended by adding modules to it. One such module is
the Sequence Diagram Viewer [18], which generates a sequence diagram
from a selected constructor or method. Figure 7 below displays a section of
the sequence diagram produced by the Sequence Diagram Viewer module for
the main method of the JUnit TestRunner class.

The advantage that the Sequence Diagram Viewer has over EclipseUML is
that the sequence diagrams constructed start from the selected method and
model all the children calls recursively. For example, in Figure 7, the object
of type TestRunner creates an object of type ResultPrinter. This was
not modeled in the previous sequence diagram generated by EclipseUML.

Figure 7. Sequence Diagram Generated by the Sequence Diagram Viewer

4.1.3 Limitations of Static Analysis

Reverse engineering sequence diagrams from source code is difficult. One of
the main reasons is that because of inheritance, polymorphism, and dynamic
binding, it is difficult and sometimes even impossible to know, using only the
source code, the dynamic type of an object and therefore, which method is
going to be executed. Multithreading and distribution further complicate the

DRDC Valcartier TM 2006-781 11

analysis [23]. As a result, the generation of sequence diagrams is difficult, as
identifying method call sequences from source code requires complex
techniques, such as symbolic execution, in addition to source code analysis,
which are not applicable in the case of large and complex systems [24].

Although static analysis can represent a complete picture of what could
happen at runtime, it does not necessarily show what actually happens [23].
Therefore, if one wants to produce meaningful sequence diagrams from
existing large and complex software systems, their executions have to be
monitored, as the exactness of the generated sequence diagrams depends
extensively on runtime behavior.

4.2 Dynamic Analysis

Dynamic analysis is the process of analyzing the behavior of a software system during
its execution [9]. The objective is to increase the level of precision provided by static
analysis and as a result, improve the comprehension of the software system under
study. More precisely, the purpose of dynamic analysis is to record the effective flow
of control, i.e., the sequence of interactions, of a system execution [25]. This section
presents two tools which can reverse engineer dynamic sequence diagrams of Java
software systems. These are J2U [26] and the Eclipse TPTP project [27].

4.2.1 J2U

Java to UML (J2U) is a tool developed by the NASRA company which
allows reverse engineering sequence diagrams of software systems based on
an execution trace. An execution trace is a record of the sequence of
instructions executed that often takes the form of a list of code labels
encountered [28]. Figure 8 on the next page shows a portion of a sequence
diagram reverse engineered by J2U using JUnit.

Because the sequence diagrams generated by J2U are based on an execution
trace, they should accurately reflect the behavior of the software system under
study. Unfortunately, this is not the case. This is due to the fact that J2U does
not model constructor calls. As a result, the generated sequence diagrams do
not exactly correspond to the actual sequence of method calls of the
underlying system.

12 DRDC Valcartier TM 2006-781

Figure 8. Sequence Diagram Generated by J2U

4.2.2 The Eclipse TPTP Project

The Eclipse Test and Performance Tools Platform (TPTP) project is an open
platform supplying frameworks and services to build test and performance
tools that can be integrated with the Eclipse platform and other tools. The
TPTP profiling tool enables to pinpoint performance and memory usage
problems within applications using visualization features. Among the views it
offers is the UML2 Trace Interaction view, which presents the execution flow
of a software system in the form of a sequence diagram, as illustrated in
Figure 9.

The sequence diagrams can be viewed at different levels of abstraction,
starting with object interactions, through interactions among threads or
processes, up to hosts interactions across a network. Furthermore, lifelines
and messages can be collapsed and expanded to hide or expand sections of
data within a view. For example, in Figure 10, the second lifeline in Figure 9
(Laucher$Ap…) as well as the fifth message (Properties) were collapsed.

Although the sequence diagrams reverse engineered by the Eclipse TPTP
project can be viewed at different levels of abstraction, there is too much
discrepancy between the granularity levels it offers. For example, the
sequence diagrams at the object level may expose a user with too much low
level information, while the view at the thread or process level may not
provide enough information to understand a software system one is not
familiar with.

DRDC Valcartier TM 2006-781 13

Figure 9. Sequence Diagram Generated by the Eclipse TPTP Project

Figure 10. Sequence Diagram with Lifelines and Messages Collapsed

14 DRDC Valcartier TM 2006-781

4.2.3 Limitations of Dynamic Analysis

Although dynamic analysis supports the specific characteristics of the object-
oriented paradigm such as dynamic binding and polymorphism, one of the
problems faced when dynamically analyzing object-oriented software systems
is the volume of information generated by execution traces [29]. This could
be a problem for the OASIS project, since the systems to be analyzed will be
large-scale military applications developed in Java and consisting of more
than 1,000 classes. In order to reduce the volume of information, existing
approaches apply techniques such as filtering, pattern matching, sampling,
and information hiding [30]. The approach used by OASIS v1 to deal with the
trace explosion problem is information hiding. This is achieved by visualizing
the generated sequence diagrams at various levels of abstraction. Execution
traces can be visualized at the object level, as it is the case in standard UML
sequence diagrams. However, they can also be visualized at the package
level, therefore hiding the messages exchanged among the classes of the same
package.

DRDC Valcartier TM 2006-781 15

5. Extraction of Dynamic Views in OASIS v1

A dynamic analysis aimed at reverse engineering sequence diagrams must address
three different but complementary issues. First, an instrumentation strategy has to be
devised to collect at runtime the information necessary to generate complete and
correct sequence diagrams at the level of details needed [23]. The impact of
instrumentation on the execution of the software system should be reduced to the
maximum possible extent. The second issue to consider is the definition of a logging
strategy to store, in an appropriate format, the data produced when executing the
instrumented software system [23]. Finally, a visualization technique must be devised
to effectively display the reverse engineered sequence diagrams [23].

Figure 11 below illustrates the high-level strategy used in OASIS v1 for the reverse
engineering of sequence diagrams based on execution traces. First, the Java bytecode
of the software system under study is instrumented. The instrumented bytecode is then
executed by the Java Runtime Environment (JRE) and the resulting execution data is
logged in an execution trace (.xrat file). Next, the execution trace is read and displayed
as a sequence diagram in an Eclipse view.

The remaining of this section explains each of these steps in more detail. The aspects
related to their implementation are covered in Section 6.

Figure 11. Extraction of Dynamic Views in OASIS v1

16 DRDC Valcartier TM 2006-781

5.1 Instrumentation

There are four different alternatives to obtain runtime information about a software
system: code instrumentation, annotation of runtime environments, post mortem
analysis, and on-line debugging or profiling [31]. The alternative which was
considered for the first implementation of the OASIS prototype is instrumentation.
This approach was favored over the others because of its low performance impact and
the fact that its implementation is not inherently complex and does not require huge
efforts, compared to annotating runtime environments and on-line debugging.

As opposed to general-purpose program transformations, instrumentation only aims to
gather additional information about a system, rather than modify its original structure
and behavior, allowing only minor side effects, such as increases in execution time or
changes to the log file [32]. As an example, Java bytecode instrumentation uses
structural and semantic information provided by the language and platform
specifications to both identify instrumentation points as well as avoid affecting the
original program structure and behavior [32]. Such instrumentation does not remove
program elements (e.g., classes, fields, and methods). Variables defined by the original
program may be read but not written. Instrumentation may add its own variables, even
to existing program elements (e.g., new fields or local variables), and those variables
may be read or written by it. Instrumentation may also insert new code into original
program methods, and invoke other methods from this code, provided that original
variables are not modified as a result of these invocations. Finally, instrumentation
may outline code, i.e., move all or part of the method code into a new method and
replace it in the original method with the invocation of the new one [32]. Once
executed, an instrumented software system generates an execution trace.

There are two different kinds of instrumentation: source and binary. In the first case,
the source code is parsed and statements are added to retrieve the required information
at runtime. In the second one, trace statements are inserted into the bytecode, which
includes applications as well as dynamic and shared libraries. Instrumenting source
code is easier than bytecode, as one can work in a high-level language. However, the
disadvantage is that after it has been instrumented, the modified source code has to be
recompiled in order to be able to execute the tracing statements and therefore, extract
dynamic information.

Due to the additional overhead for recompiling instrumented source code and the fact
that the objective of the OASIS project is to recover and comprehend the architecture
of large scale military software systems consisting of more than 1,000 classes,
bytecode instrumentation was selected. This choice was motivated by the fact that it is
not intrusive in the source code and it allows to specify (1) the types of entities to
instrument, (2) the parts of the code in which those entities must be instrumented, and
(3) the kind of information to collect from the different entity types [33].

One limitation of instrumentation is that the behavior of the instrumented system may
be different from the expected one (e.g., deadlines), as a consequence of the delays
introduced by the execution of the added code [23]. This issue is unavoidable, as
observing a system changes the system [34]. However, this should not be a problem in

DRDC Valcartier TM 2006-781 17

the present case, as the systems targeted by the OASIS research project are not, at the
moment, hard real-time systems with deadlines. As a result, the delays introduced by
the instrumentation should not change the intended behavior of the system. Also, in
order to limit the impact of instrumentation, only the constructs required to obtain the
necessary information are instrumented.

5.2 Logging Strategy

As previously illustrated in Figure 11, once the software system under study has been
instrumented, it then has to be executed. In OASIS v1, when the statements inserted
into the bytecode during instrumentation are executed, they produce trace statements,
i.e., text lines, in the trace file. This trace file contains methods entry and exit, along
with the method signature and the class of the target object, i.e., the object executing
the method. Also, a timestamp based on each method local time is inserted to indicate
when the method execution occurred. In the trace file, methods are ordered by their
execution sequence and indented according to their calling hierarchy. Figure 12 below
shows an example of a log file generated by OASIS v1.

Figure 12. Sample Log File

18 DRDC Valcartier TM 2006-781

5.3 Visualization

Once the execution trace file has been created, OASIS v1 reads it and generates the
corresponding sequence diagram in an Eclipse view, as illustrated in Figure 13 below.

Figure 13. Sequence Diagram Generated by OASIS v1

As mentioned in Section 4.2 of the present document, there already exist tools which
can generate sequence diagrams based on system execution. However, they suffer
from the trace explosion problem, i.e., they expose users to a large volume of
information. The Eclipse TPTP project attempts to deal with this problem by offering
to view the sequence of execution flow from different abstraction levels, starting with
class interactions, through interactions among threads or processes, up to hosts
interactions across a network. Although the thread and process views allow a
considerable reduction of the diagrams size, they are not useful to map system
functionalities to architectural elements, something which is essential when trying to
understand an unfamiliar system at the architectural level.

The approach used in OASIS v1 to address the trace explosion problem is information
hiding. As in the Eclipse TPTP project, information hiding is achieved by displaying
the sequence diagrams at different abstraction levels. However, the difference between
the additional degree of abstraction provided by OASIS v1 is that it offers a higher
degree of generalization than the Eclipse TPTP class view, while being at a lower level
than the thread, process, and host views.

5.3.1 Object Level Sequence Diagrams

At the object level, the sequence diagrams generated by OASIS v1 display the
interactions among the objects which participate in the execution of the
software system. Figure 14 shows an example of such a diagram. One

DRDC Valcartier TM 2006-781 19

problem with this level of abstraction is that when used to visualize the
execution trace of large-scale applications consisting of more than 1,000
classes, it can generate a very large volume of information. To address this
limitation, another abstraction level is proposed.

5.3.2 Package Level Sequence Diagrams

The package level allows a considerable reduction in the diagrams size, since
messages exchanged between objects of the same package are encapsulated in
the latter and not shown in the diagram. Therefore, users can get the mapping
from system functionalities to architectural elements. Figure 15 on the next
page shows an example of a sequence diagram displayed at the package level.
This abstraction level reduces the cognitive burden and, as a result, improves
the software comprehension process, since it allows information to be filtered
out. Therefore, a person trying to understand a system has less information to
search through and can concentrate on the system's high level structures as
well as the interactions between them. This abstraction level also addresses
the limitation of the object level and can be used to visualize the interactions
of an object-oriented software system consisting of more than 1,000 classes.

To group together all the objects which belong to the same package, the user
has to right click on an object and select Fold package classes from the
contextual menu, where package represents the fully qualified name of the
package to which the selected object belongs. A package can also be
expanded back to the object level. The user has simply to right click on it and
select Unfold package from the contextual menu.

Figure 14. Object Level Sequence Diagram

20 DRDC Valcartier TM 2006-781

Figure 15. Package Level Sequence Diagram

5.3.3 Method Collapsing

Another feature present in OASIS v1 to hide sections of data within the view
and therefore, reduce the complexity of the generated sequence diagram, is
the possibility to collapse the objects focus of control. For example, in Figure
17, the focus of control of the comparaison package, surrounded by a red
rectangle, was collapsed for the Application.<init> method call.
Compared to the same diagram in Figure 16, the one with the focus of control
collapsed is slightly less complex, as all the methods calls invoked from the
selected method are hidden. This feature is useful when one understands a
method call and wants to collapse it in order to reduce the complexity of the
sequence diagram.

To collapse the focus of control of a method call, the user has to right click on
it to bring up the context menu and select Fold method(), where method is
the fully qualified name of the method called. The collapsed message is
indicated by the word <<nested>> being inserted before the method name.
The focus of control of a method can also be expanded back by right clicking
on the collapsed focus of control and selecting Unfold method() from the
contextual menu.

DRDC Valcartier TM 2006-781 21

Figure 16. Sequence Diagram with Method Expanded

Figure 17. Sequence Diagram with Method Collapsed

5.3.4 Searching

The searching functionalities offered in OASIS v1 allow to find, in the
sequence diagram view, objects, packages, method calls, and objects focus of
control matching a regular expression. Figure 18 on the next page shows the
Search dialog box.

22 DRDC Valcartier TM 2006-781

Figure 18. Search Dialog Box

The user first selects what to search for, i.e., life lines (objects and packages),
method executions (objects focus of control), and calls (method calls). The
user then specifies, in the input field, the pattern of the regular expression to
search for in the sequence diagram. After having clicked on the Search
button, the results found are shown in the Eclipse Search view, as illustrated
in Figure 19.

Figure 19. Eclipse Search View

Clicking on a result in the list will refresh the sequence diagram view with the
object, package, method call, or object focus of control matching the search
criteria highlighted, as illustrated in Figure 20 on the next page.

DRDC Valcartier TM 2006-781 23

 Figure 20. Sequence Diagram with a Method Call Highlighted

5.3.5 Filtering

In addition to its searching functionalities, OASIS v1 provides a filtering
mechanism that can be used to reduce the amount of data displayed in the
sequence diagram view. The Filter dialog box is identical to the Search dialog
box. The user specifies what to filter out, i.e., objects and packages, objects
focus of control, or method calls, as well as the pattern of the regular
expression to match. After clicking on the Filter Out button, the sequence
diagram view is refreshed with the elements matching the regular expression
removed.

On the sequence diagram view toolbar, the following two icons
offer additional filtering functionalities. They respectively allow to filter out
methods signature as well as nested focus of control. Figure 21 on the next
page displays the interactions between the comparaison and java.util
packages of an application. Figure 22 shows the interactions between the
same two packages, but with the methods signature and nested focus of
control having been filtered out. As one can see, the amount of data displayed
in the second sequence diagram view has been significantly reduced.

24 DRDC Valcartier TM 2006-781

 Figure 21. Sequence Diagram without Filtering Applied

 Figure 22. Sequence Diagram with Filtering Applied

DRDC Valcartier TM 2006-781 25

5.4 Domain Knowledge Definition and Exploitation

One strategy used by programmers to understand the source code of an unfamiliar
system is the top-down approach [35]. Using this strategy, the knowledge about the
application domain is first reconstructed and then mapped on the source code. This
approach is required to reconstruct and understand a software system at the
architectural level, as it allows to map source code elements to their corresponding
operational concepts.

One limitation of the current tools which was identified in the state-of-the-art survey
previously conducted on architecture recovery and comprehension [5] was that they do
not offer functionalities to incorporate domain and user knowledge. This might
therefore prevent programmers from using the top-down approach as a comprehension
strategy. To overcome this limitation, OASIS v1 offers a way to define and store the
domain model of a software system to comprehend. This results in a vocabulary of
terms representing entities of the domain and their relationships, which together imply
certain semantic information. These entities can then be mapped to an execution trace
to determine which ones were executed by a particular run of the system.

Figure 23 on the next page shows the Domain Knowledge Viewer in OASIS v1. On
the left-hand side, the operations and objects of the application domain are listed in a
tree structure. In the present case, the application under study is a module of the
Collaborative Operations Planning System (COPlanS) [36]. COPlanS is an integrated
flexible suite of planning, decision-aid, and workflow management tools aimed at
supporting the CF Operational Planning Process (OPP). It was developed by the
Decision Support Systems Section at DRDC Valcartier. In the present case, examples
of domain operations and objects could be respectively “Add a Course of Action
(COA)” and “Mission.” For each domain operation and object, a description is
provided on top of the right pane.

As illustrated in Figure 24, by clicking on the Add Trace… button located on the
lower right of the viewer, a user can select an execution trace file, in this case,
002_TreeMethodHandler.xrat, and view the execution history of the methods
associated with a domain operation or object. In the present example, the methods
executed by the Save(Project) operation are displayed. For each method, its fully
qualified name and the time, expressed in milliseconds, at which the method was
called are indicated.

Once an execution trace file has been selected, the domain operations and objects’
nodes become color-coded to indicated whether they were slightly (green), moderately
(yellow), or strongly (red) solicited by a particular execution. The color of a node
depends whether is was executed by one to three (green), four to five (yellow), or more
than six (red) method calls. A node in gray means that it was not executed by any
method.

26 DRDC Valcartier TM 2006-781

Figure 23. Domain Knowledge Viewer

Figure 24. Domain Knowledge Viewer for a Particular Execution Trace

DRDC Valcartier TM 2006-781 27

In OASIS v1, the definition of an application domain is done manually using an
eXtensible Markup Language (XML) file. Figure 25 below shows an example of such
a file. The association of a domain operation or object to a method, which later allows
its mapping to method calls in the execution trace, is also done manually in the XML
file.

Despite the above limitations, it was believed important to partially implement this
functionality in OASIS v1. It would allow demonstrating to potential military clients
the usefulness of being able to associate the high level operational concepts of a
software system's application domain to their corresponding entities in execution
traces.

 Figure 25. Domain Knowledge XML File

28 DRDC Valcartier TM 2006-781

6. OASIS v1 Implementation

The software development methodology selected for OASIS v1 was rapid prototyping.
Rapid prototyping is a method for addressing problems in the design and development
of systems via prototypes [37]. A prototype is a simplified model of a proposed
system. The reason it was decided to develop a prototype for the first implementation
of OASIS is because it would help in [38]:

1. Formulating and evaluating requirements, specifications, and designs.

2. Demonstrating the feasibility, behavior, and performance of the proposed system.

3. Identifying and reducing risks of system misdevelopment.

4. Communicating ideas, especially among diverse groups.

5. Answering questions about specific properties of the proposed system.

In addition to using rapid prototyping as the software development methodology,
OASIS v1 also reused as much as possible other components, such as existing third-
party libraries and Eclipse plug-ins. The present section introduces the most important
components which were reused for the development of OASIS v1.

6.1 Eclipse

Eclipse “is an open source community whose projects are focused on providing a
vendor-neutral open development platform and application frameworks for building
software” [39]. It is led by the Eclipse Foundation, “a not-for-profit corporation
formed to advance the creation, evolution, promotion, and support of the Eclipse
Platform and to cultivate both an open source community and an ecosystem of
complementary products, capabilities, and services” [39].

The principal advantage of using Eclipse for the development of the first version of the
OASIS prototype is that it provides a plug-in based framework that makes it easier to
create, integrate, and utilize software tools. A plug-in provides functionality by
hooking into extension points defined by other plug-ins. It can also define new
extension points. The Eclipse runtime component defines the plug-in infrastructure to
discover the available plug-ins at start-up and manage the plug-in loading. By
collaborating and exploiting the core Eclipse integration technology, the OASIS
project could leverage the numerous plug-ins that composed the Eclipse platform, as
well as the plethora of additional plug-ins developed by the Eclipse community. It
could therefore concentrate on core competencies to create new development
technology, such as the reverse engineering of UML sequence diagrams from Java
software systems. Figure 26 on the next page shows a screenshot of the Eclipse
workbench which defines the Eclipse user interface paradigm. The version of Eclipse
used for OASIS v1 was Eclipse 3.1 milestone 2.

DRDC Valcartier TM 2006-781 29

Figure 26. Eclipse User Workbench

6.2 Infrastructure and Technologies

Figure 27 below illustrates the infrastructure of OASIS v1 and lists the existing
Eclipse plug-ins and external libraries which were reused for its implementation.

Figure 27. OASIS v1 Infrastructure and Technologies

30 DRDC Valcartier TM 2006-781

At the center of the previous diagram, there is the Eclipse platform on which OASIS
v1 is based. Everything located in the inner brown circle corresponds to existing
Eclipse plug-ins used by the prototype. Their functionality is indicated in yellow (e.g.,
instrumentation, modeling, etc.). The part in lighter brown corresponds to third-party
libraries that are also required by the prototype. The rest of this section explains the
purpose of each of these components.

6.3 Bytecode Instrumentation

As mentioned in Section 5.1, the selected approach for the collection of dynamic
information was Java bytecode instrumentation. Two options were considered for its
implementation: the Java Runtime Analysis Toolkit (JRat) [40] and the Eclipse TPTP
project. Each of these options is discussed next.

6.3.1 JRat

JRat was implemented to enable developers to better understand the runtime
behavior of their Java programs [40]. It can accumulate timing statistics,
create trace logging, and track the rate methods are called, as well as their
response time. Although there is a number of ways JRat can monitor
applications, the one used for OASIS v1 was bytecode instrumentation. JRat
uses the Byte Code Engineering Library (BCEL) [41] to manipulate Java
bytecode. Figure 29 on the next page shows an example [40] of the code
added by JRat for the instrumentation of the method displayed in Figure 28
below.

public class MyMath {

 public int max(int a, int b) {
 return (a > b) ? a : b;
 }
}

Figure 28. Java Source Code

DRDC Valcartier TM 2006-781 31

public class MyMath {

 static final MethodHandler HANDLER_FOR_max_0 =
 HandlerFactory.getMethodHandler(
 "org.package.MyMath",
 "max", "(II)I");

 private final int max__shiftone_JRat(int a, int b) {
 return (a > b) ? a : b;
 }

 public int max(int a, int b) {

 long start = 0L;
 Object args[] = null;
 boolean success = false;
 try {

 HANDLER_FOR_max_0.onMethodStart(this, args);

 start = System.currentTimeMillis();
 int result = max__shiftone_JRat(a,b);
 success = true;
 return result;

 } catch(Throwable t) {

 HANDLER_FOR_max_0.onMethodError(this, args, t);
 throw t;

 } finally {

 HANDLER_FOR_max_0.onMethodFinish(this,
 args, null,
 System.currentTimeMillis() - start,
 success);

 }
 }
}

Figure 29. Java Source Code Instrumented Using JRat

Given a class file to instrument, JRat will add instrumentation code to all
methods except the constructor [42]. However, in order to generate valid
sequence diagrams, the class constructor should also be instrumented, as it
might call other methods. If not, the hierarchy of method calls will not be
captured correctly. Because of this limitation, another option was selected for
bytecode instrumentation.

32 DRDC Valcartier TM 2006-781

6.3.2 The Eclipse TPTP Project

The Eclipse TPTP project provides Probekit, a framework to write and use
probes. Probes are Java code fragments that can be invoked at specified
points in a Java class file to collect runtime data about an application.
Probekit offers various injection points for probes such as method entry,
method exit, catch-finally blocks, and class loading. Although Probekit can be
used for profiling and debugging, it was used in OASIS v1 to trace method
invocations based on certain actions for the purpose of reverse engineering.

A probe is composed of a target, an import, and one or more fragments. The
target specifies the filtering criteria for the probe, i.e., the packages, classes,
and methods that should be targeted by the probe. The import is used to
specify the Java packages and classes that are referenced by the probe.
Finally, the fragment defines the probe logic, i.e., where the fragment code
will get injected into the application and the Java code that should be invoked
by the fragment.

Once a probe has been created, it can be used to instrument Java applications
statically. With static instrumentation, probes are injected into the selected
class files prior to execution. The Java classes can then be executed normally
and have the probes collect the necessary runtime data.

6.3.3 XRat File Format

The execution of Java bytecode instrumented using probes generates a tree of
method calls, capturing their order and context, stored as a XRat file. XRat is
the format used by JRat to log execution traces as XML documents. This
format was selected since Probekit does not provide any particular file format
to store execution traces. Figure 30 below shows a section of a XRat file.

Figure 30. Sample XRat File

DRDC Valcartier TM 2006-781 33

For each method call, represented by a <call> tag, the following attributes
are stored:

Table 2. XRat <call> Tag Attributes

ATTRIBUTE DESCRIPTION

c The fully qualified name of the class to which the method belongs.

m The method name.

s The method signature expressed using Java Native Interface (JNI)
descriptors.

tim The time, expressed in milliseconds, at which the method was called.

Although the <call> tag has also the o, ent, xit, err and dur attributes,
those are not used. The reason why default values are put for them is because
they are required by the Document Type Definition (DTD) of the XRat
document.

6.4 SEQUENCE

SEQUENCE [43] is an open source Java library for generating UML sequence
diagrams. Unlike similar programs used in forward engineering, it does not require the
user to actually draw the diagram. Instead, the user writes a textual description of the
method calls to model following the SEQUENCE syntax. Then, the layout and
diagram are respectively calculated and drawn automatically. For instance, the
sequence diagram on the next page was defined by the description beneath it. This
example demonstrates most of the language’s features available to describe diagrams
using the SEQUENCE syntax.

34 DRDC Valcartier TM 2006-781

Figure 31. SEQUENCE

6.5 Integrating SEQUENCE into Eclipse

When SEQUENCE was integrated into Eclipse as a plug-in, one technical challenge
was faced. This was due to the fact that SEQUENCE and Eclipse are based on two
different widget toolkits, which are respectively AWT/Swing and SWT.

The Standard Widget Toolkit (SWT) is “the software component that delivers native
widget functionality for the Eclipse platform in an operating independent manner”
[44]. Although SWT is similar to AWT/Swing, they differ in their implementation
strategy. “SWT uses native widgets wherever possible for three main advantages:
performance, look-and-feel, and debugging” [44]. It only implements a widget in Java
if there is no native version available. While SWT offers the same Application
Programming Interface (API) on all platforms, its implementation differs for each of
them. This implementation is partially contained in a shared library which offers a
subset of the operating system widget API to SWT using JNI [44]. On Windows, this
library is implemented as a DLL.

The Abstract Window Toolkit (AWT) follows a different approach than SWT. It
adopts a least common denominator strategy by providing only the widgets which are
available on all platforms [44]. Swing provides the missing widgets by implementing
in Java higher-level ones on top of the existing AWT widgets. As a result, contrary to
SWT, Swing provides only one implementation for all platforms [44].

DRDC Valcartier TM 2006-781 35

At the time OASIS v1 was implemented, there was an experimental mechanism to run
Swing-based tools within Eclipse. However, its use was not officially supported and it
had the following limitations [45]:

1. It only worked on Windows.

2. The keyboard did not work for all widgets.

3. There could be possible deadlock problems.

4. The API was internal and subjected to change.

Due to the above restrictions, it was decided to re-implement in SWT the SEQUENCE
classes which used the AWT/Swing widgets to graphically render the sequence
diagrams. This solution also provided the tightest interface integration mechanism
[44]: SEQUENCE would run in-place within Eclipse, i.e., it would be visually
indistinguishable from the built in tools. Also, it would run in-process, i.e., within the
same virtual machine and class libraries as Eclipse. Furthermore, it could achieve
seamless functional integration in the case the Eclipse API is used.

In addition to the above partial re-implementation, SEQUENCE was also modified to
support the functionalities described in Section 5.3, i.e., package level sequence
diagrams, method collapsing, searching, and filtering.

6.6 Additional Libraries and Plug-ins

As already mentioned, one advantage of using the Eclipse platform for the first version
of the OASIS prototype was that its numerous plug-ins as well as the others developed
by the Eclipse community could be leveraged. This section presents the existing plug-
ins and other libraries which were reused for the implementation of OASIS v1.

6.6.1 Metrics

A metric measures a property of a piece of software or its specifications. It
has been shown that metrics can provide guidance in analyzing the quality of
the design and source code of a system, as well as its possible maintainability
and comprehension [46]. For this reason, it was decided to integrate within
OASIS v1 the open source Eclipse plug-in Metrics [47].

As its name indicates, this plug-in provides metrics calculation and
dependency analysis for the Eclipse platform. It measures various metrics
with average and standard deviation, as well as detects cycles in package and
type dependencies and graphs them. Figure 32 on the next page displays one
of the Eclipse views provided by the Metrics plug-in.

The Metrics view displayed in Figure 32 provides 23 metrics. For a complete
list, refer to [48]. Metrics which are out of optimal range are highlighted in

36 DRDC Valcartier TM 2006-781

red. Otherwise, they are displayed in blue, if they are within the range, and in
black, if their value cannot be calculated.

Figure 32. Eclipse View Provided by the Metrics Plug-in

Although Metrics provides standard source and object-oriented class metrics,
they are not necessarily architecturally significant. The following list of
object-oriented package metrics, also provided by the Metrics plug-in, has
been proved in [49] to be particularly useful for architecture recovery and
comprehension. This suite of metrics is based on the work undertaken by
Martin [50].

Afferent Coupling (Ca). Counts the number of other packages which depend
on classes within the analyzed package. Ca is an indicator of the level of
responsibility of a package.

Efferent Coupling (Ce). Counts the number of other packages that the
classes within the analyzed package depend upon. Ce is an indicator of the
package’s independence.

Abstractness (A). It is the ratio of the number of abstract classes within a
package relative to the total number of classes it contains. The range of this
metric is from 0 to 1. An abstractness value of zero (A = 0) indicates a
completely concrete package, while a value of one (A = 1) indicates a
completely abstract package.

Instability (I). Instability is defined as the ratio between efferent and total
coupling (Ca + Ce). This metric is an indicator of the package’s resilience to
change, i.e., the effort to change a package without impacting other packages
within the application. The range of this metric goes from 0 to 1. An I of 0

DRDC Valcartier TM 2006-781 37

reveals a completely stable package, while an I of 1 indicates that the package
is instable.

Distance from the Main Sequence (DMS). Calculates the perpendicular
distance of a package from the idealized line given by A + I = 1. It indicates
the package’s balance between abstractness and stability. A package squarely
on the main sequence is perfectly balanced with respect to abstractness and
stability. Ideally, packages should either be completely abstract and stable (x
= 0, y = 1), or completely concrete and instable (x = 1, y = 0). The range for
this metric goes from 0 to 1. A DMS of 0 indicates that a package is
coincident with the main sequence, while a DMS of 1 reveals that the
package is as far as possible from the main sequence.

6.6.2 Omondo EclipseUML

As mentioned in Section 4.1.1, Omondo EclipseUML is an Eclipse plug-in
for model driven development based on UML and EMF. In addition to its
capacity to reverse engineer sequence diagrams previously described, it also
offers functionalities to reverse engineer class and package diagrams.

The reason why EclipseUML was added to OASIS v1 is because the
behavioral views provided by the latter could be complemented by the
structural ones of EclipseUML. At the architectural level, the structural views
which are of most interest are package and class diagrams. Figure 33 on the
next page displays the package diagram of JUnit reverse engineered using
EclipseUML.

38 DRDC Valcartier TM 2006-781

Figure 33. Package Diagram Reverse Engineered by EclipseUML

6.6.3 The Eclipse JDT Subproject

The Eclipse Java Development Tools (JDT) subproject [51] “contributes a set
of plug-ins that adds the capabilities of a full-featured Java IDE to the Eclipse
platform. The JDT plug-ins provide APIs so that they can themselves be
further extended by other tool builders” [52]. The JDT API was used
extensively for the development of the different Eclipse plug-ins which
implement the functionalities of OASIS v1.

6.6.4 XSD

The XML Schema Definition (XSD) library is part of the Eclipse Model
Development Tools (MDT) project [53]. It provides an API for manipulating
the components of an XML Schema, as described by the World Wide Web
Consortium (W3C) XML Schema specifications [54], as well as for
manipulating the DOM-accessible representation of XML and keeping these

DRDC Valcartier TM 2006-781 39

representations in agreement as schemas are modified [55]. The XSD library
was used in OASIS v1 as it is required by TPTP.

6.6.5 Log4j

Log4j [56] is an open source Java-based library developed by the Apache
Software Foundation [57]. It allows to insert log statements into an
application. With Log4j, logging can be enabled at runtime without
modifying the application bytecode. It was designed so that even though log
statements remain in the bytecode, they do not heavily impact the
performance of the application. The Log4j library was used in OASIS v1 as it
is required by SEQUENCE.

40 DRDC Valcartier TM 2006-781

7. Conclusions and Future Work

Reverse engineering techniques and tools are required to understand, at the
architectural level, the structure and behavior of software systems for which the
documentation is neither existent nor up to date. The proof of concept prototype
presented in this document is the first step towards the complete reverse engineering of
software systems behavior at the architectural level. The reverse engineering of UML
sequence diagrams can play an important part in the maintenance of CF object-
oriented software systems. These systems are considerable investments which will
have to be maintained over a long period of time, without the assistance of the original
designers and developers and most of the time, with incomplete documentation.
Reverse-engineered sequence diagrams provide essential insights for the
comprehension and maintenance of such systems, as object interactions are at the core
of object-oriented design and programming [58].

The advantage of the proposed approach over the already existing solutions is that the
sequence diagrams can be reconstructed at the package level, in addition to the object
level. Sequence diagrams displayed at the package level allow mapping system
functionalities to source code and architectural entities. This is essential to understand
unfamiliar large scale systems at the architectural level. Also, with the prototype being
integrated into Eclipse, the system behavioral views it reverse engineers can be
complemented by structure views provided by other tools.

Following the implementation of this proof of concept prototype, another one, with an
improved set of functionalities as well as additional views, should be developed. Also,
a suitable meta-model should be used to represent and store the execution data of Java
software systems, instead of the .xrat file format. Ideally, once this second prototype is
implemented, another study, similar to the one previously conducted as part of the
OASIS project [6], but with an improved design and set of comprehension tasks,
should be conducted. Its objective would be to assess the added value of the OASIS
architecture recovery and comprehension prototype on the understanding of
participants. Future work should also consist of extending the prototype to support the
architecture recovery and comprehension of C/C++ legacy systems, through the
Eclipse C/C++ Development Tooling (CDT) project [59]. This would address one
limitation of most existing tools, i.e., multi-language support.

DRDC Valcartier TM 2006-781 41

8. References

1. The Technical Cooperation Program - Joint Systems and Analysis Group, “The
Engineering and Acquisition of Systems of Systems in the United States DoD,”
Tech. Report TR-JSA-TP4-1-2001, Jan. 2001.

2. D. Garlan and D.E. Perry, “Introduction to the Special Issue on Software
Architecture,” IEEE Trans. on Software Eng., vol. 21 no. 4, Apr. 1995, pp. 269-
274.

3. R. Richardson, et al., “A Survey of Research into Legacy System Migration,”
Tech. Report TCD-CS-1997-01, Trinity College Dublin, Dublin, Ireland, Jan.
1997.

4. M. Lizotte and J. Rilling, “OASIS: Opening-up Architecture of Software-Intensive
Systems,” Proc. of the 24th Army Science Conf. (ASC ’04), Orlando, Fla., Nov.
2004.

5. J. Rilling, “State of the Art Report: System Architecture Recovery and
Comprehension,” Tech. Report, DRDC Valcartier, Val-Bélair, Que., 2003.

6. P. Charland, et al., “Using Software Analysis Tools to Understand Military
Applications: A Qualitative Study,” Tech. Memorandum TM 2005-425, DRDC
Valcartier, Val-Bélair, Que., 2005.

7. P. Charland, et al., “Opening up Architectures of Software-Intensive Systems: A
Functional Decomposition,” Tech. Memorandum TM 2006-732, DRDC Valcartier,
Val-Bélair, Que., 2006.

8. Eclipse, “Eclipse.org home,”Jun. 2007; http://www.eclipse.org/.

9. R. Kazman, L. O’Brien, and C. Verhoef, “Architecture Reconstruction Guidelines,
Third Edition,” Tech. Report CMU/SEI-2002-TR-034, Carnegie Mellon Univ.,
Pittsburgh, Pa., Nov. 2003.

10. Rational PurifyPlus, “IBM - Rational PurifyPlus - Rational PurifyPlus - Software,”
Jun. 2007; http://www-306.ibm.com/software/awdtools/purifyplus/win/.

11. CASE ATTI, “CASE ATTI: A Testbed for Sensor Data Fusion,” Jun. 2007;
http://www.valcartier.drdc-rddc.gc.ca/poolpdf/e/137_e.pdf.

12. B. Bruegge and A.H. Dutoit, Object-Oriented Software Engineering: Conquering
Complex and Changing Systems, Prentice Hall, 2000.

13. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, 2005.

42 DRDC Valcartier TM 2006-781

14. Visual Paradigm, “UML 2 Diagrams - UML Modeling Tool,” Jun. 2007;
http://www.visual-paradigm.com/VPGallery/diagrams/.

15. OMG, “OMG Unified Modeling Language Specification Version 1.5,” Object
Management Group, Mar. 2003.

16. E. Korshunova, et al., “CPP2XMI: Reverse Engineering of UML Class, Sequence,
and Activity Diagrams from C++ Source Code,” Proc. of the 13th Working Conf.
on Reverse Eng. (WCRE 2006), Benevento, Italy, Oct. 2006, pp. 297-298.

17. EclipseUML, “Omondo Corp - The Modeling Eclipse UML Model Driven Tool,”
Jun. 2007; http://www.omondo.com/.

18. Sequence Diagram Viewer - NetBeans Module, “sequencediagramviewer:
Sequence Diagram Viewer - NetBeans Module,” Jun. 2007; https://
sequencediagramviewer.dev.java.net/.

19. Borland Together, “Software Architecture Design, Visual UML & Business
Process Modeling - from Borland,” Jun. 2007; http://www.borland.com/
us/products/ together.

20. NetBeans UML Modeling, “uml: netbeans.org : UML Modeling,” Jun. 2007;
http://uml.netbeans.org/index.html.

21. JUnit, “JUnit, Testing Resources for Extreme Programming,” Jun. 2007;
http://www.junit.org/.

22. NetBeans IDE, “Welcome to NetBeans,” Jun. 2007; http://www.netbeans.org/.

23. L.C. Briand, Y. Labiche, and J. Leduc, “Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software,” IEEE Trans. on Software
Eng., vol. 32, no. 9, Sept. 2006, pp. 642-663.

24. C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering,
Prentice Hall, 2003.

25. M. Merdes and D. Dorsch, “Experiences with the Development of a Reverse
Engineering Tool for UML Sequence Diagrams: A Case Study in Modern Java
Development,” Proc. of the 4th Int’l Symposium on Principles and Practice of
Programming in Java (PPPJ ’06), Manheim, Germany, Aug. 2006, pp. 125-134.

26. J2U, “Nasra.fr,” Jun. 2007; http://www.nasra.fr/j2u.html.

27. Eclipse TPTP, “Eclipse Test & Performance Tools Platform Project,” Jun. 2007;
http://www.eclipse.org/tptp/.

28. IEEE Standard Glossary of Software Engineering Terminology, IEEE Press, 1990.

DRDC Valcartier TM 2006-781 43

29. A. Vasconcelos, R. Cepêda, And C. Werner, “An Approach to Program
Comprehension through Reverse Engineering of Complementary Software
Views,” 1st Int’l Workshop on Program Comprehension through Dynamic
Analysis (PCODA), Pittsburgh, Pa., Nov. 2005, pp. 58-62.

30. A. Hamou-Lhadj and T.C. Lethbridge, “A Survey of Trace Exploration Tools and
Techniques,” Proc. of the 2004 Conf. of the Centre for Advanced Studies on
Collaborative Research, Markham, Ont. Oct. 2004, pp. 42-55.

31. W. Löwe, A. Ludwig, and A. Schwind, “Understanding Software - Static and
Dynamic Aspects,” Proc. of the 17th Int’l Conf. on Advanced Science and
Technology (ICAST ’01), Chicago, Ill., October 2001, pp. 83-88.

32. M. Biberstein, et al., “Instrumenting Annotated Programs,” Proc. of the 1st
ACM/USENIX Int’l Conf. on Virtual Execution Environments, Chicago, Ill., Jun.
2005, pp. 164-174.

33. J. Guo, Y. Liao, and B. Parviz, “A Performance Validation Tool for J2EE
Applications,” Proc. of the 13th Ann. IEEE Int’l Symp. And Workshop on Eng. of
Computer Based Systems, Potsdam, Germany, Mar. 2006, pp. 387-396.

34. W. Schütz, The Testability of Distributed Real-Time Systems, Springer, 1993.

35. R. Brooks, “Towards a Theory of the Comprehension of Computer Programs,”
Int’l J. of Man-Machine Studies, vol. 18, no. 6, June 1983, pp. 543-554.

36. COPlanS, “COPlanS - Collaborative Operations Planning System,” Jun. 2007;
http://www.valcartier.drdc-rddc.gc.ca/poolpdf/e/166_e.pdf.

37. M. Tanik and R. Yeh, “The Role of Rapid Prototyping in Software Development,”
Proc. of the 22nd Hawaii Int’l Conf. on System Sciences, Kauai, Hawaii, Jan.
1989, pp. 337-338.

38. L. Luqi and R. Steigerwald, “Rapid Software Prototyping,” Proc. of the 25th
Hawaii Int’l Conf. on System Sciences, Kauai, Hawaii, Jan. 1992, pp. 470-479.

39. Eclipse, “About the Eclipse Foundation,” Jun. 2007; http://www.eclipse.org/org/.

40. JRat, “JRat the Java Runtime Analysis Toolkit,” Jun. 2007; http://
jrat.sourceforge.net/.

41. BCEL, “BCEL - Byte Code Engineering Library (BCEL),” Jun. 2007; http://
jakarta.apache.org/bcel/manual.html.

42. D. Lo and S.-C. Khoo, “SMArTIC: Towards Building an Accurate, Robust and
Scalable Specification Miner,” Proc. of the 14th ACM SIGSOFT Int’l Symp. on
Foundations of Software Eng., Portland, Ore., Nov. 2006, pp. 265-275.

44 DRDC Valcartier TM 2006-781

43. SEQUENCE, “itymbi …: SEQUENCE Archives,” Jun. 2007; http://
www.zanthan.com/itymbi/archives/cat_sequence.html.

44. D. Rayside, et al., “Integrating SHriMP with the IBM WebSphere Studio
Workbench,” Proc. of the 9th NRC/IBM Centre for Advanced Studies Conference
(CASCON '01), Toronto, Ont., Nov. 2001, pp. 79-93.

45. V. Irvine, “Limitations of Swing/SWT Experimental Integration Mechanism,”
Eclipse Corner Newsgroup, Jul. 2001.

46. N.E. Fenton, “Software Measurement Programs,” Software Testing and Quality
Eng., vol. 1, no. 3. 1999, pp. 40-46.

47. Eclipse Metrics plug-in, “SourceForge.net: Eclipse Metrics plugin,” Jun. 2007;
http://sourceforge.net/projects/metrics.

48. Eclipse Metrics plug-in, “Metrics 1.3.6,” Jun. 2007; http://
metrics.sourceforge.net/.

49. I. Gorton and L. Zhu, “Tool Support for Just-in-Time Architecture Reconstruction
and Evaluation: An Experience Report,” Proc. of the 27th Int’l Conf. on Software
Eng. (ICSE '05), St. Louis, Mo., May 2005, pp. 514-523.

50. R. Martin, “OO Design Quality Metrics: An Analysis of Dependencies,” Proc. of
the Workshop Pragmatic and Theoretical Directions in Object-Oriented Software
Metrics, Oct. 1994.

51. Eclipse JDT, “Eclipse Java Development Tools (JDT) Subproject,” Jun. 2007;
http://www.eclipse.org/jdt/.

52. Eclipse JDT, “Eclipse Java Development Tools (JDT) Subproject Overview,” Jun.
2007; http://www.eclipse.org/jdt/overview.php.

53. Eclipse MDT, “Eclipse Modeling - MDT - Home,” Jun. 2007; http://
www.eclipse.org/modeling/mdt/.

54. XML Schema, “XML Schema Part 0: Primer Second Edition,” Jun. 2007;
http://www.w3.org/TR/xmlschema-0/.

55. Eclipse MDT, “Eclipse Modeling - MDT - Home,” Jun. 2007; http://
www.eclipse.org/modeling/mdt/?project=xsd#xsd.

56. Log4j, “Log4j project - Introduction,” Jun. 2007; http://logging.apache.org/ log4j/.

57. Apache, “Welcome! - The Apache Software Foundation,” Jun. 2007; http://
www.apache.org/.

58. A. Rountev, O. Volgin, and M. Reddoch, “Static Control-Flow Analysis for
Reverse Engineering of UML Sequence Diagrams,” Proc. of the 6th ACM

DRDC Valcartier TM 2006-781 45

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Eng.,
Lisbon, Portugal, Sept. 2005, pp. 96-102.

59. Eclipse CDT, “Eclipse C/C++ Development Tooling - CDT,” Jun. 2007;
http://www.eclipse.org/cdt/.

46 DRDC Valcartier TM 2006-781

List of Acronyms

A Abstractness

API Application Programming Interface

AWT Abstract Window Toolkit

BCEL Byte Code Engineering Library

C4ISR Command, Control, Communications, Computers, Intelligence,
Surveillance, and Reconnaissance

Ca Afferent Coupling

CASE Computer-Aided Software Engineering

CASE ATTI Concept Analysis and Simulation Environment for Automatic Target
Tracking and Identification

CDT C/C++ Development Tooling

Ce Efferent Coupling

CF Canadian Forces

COA Course of Action

COPlanS Collaborative Operations Planning System

CPF Canadian Patrol Frigate

DMS Distance from the Main Sequence

DND Department of National Defence

DRDC Defence Research and Development Canada

DTD Document Type Definition

EDI Environnement de développement intégré

EMF Eclipse Modeling Framework

FC Forces canadiennes

DRDC Valcartier TM 2006-781 47

HCI Human Computer Interface

I Instability

IDE Integrated Development Environment

J2U Java to UML

JDT Java Development Tools

JNI Java Native Interface

JRat Java Runtime Analysis Toolkit

JRE Java Runtime Environment

MDT Model Development Tools

OASIS Opening up Architectures of Software-Intensive Systems

OPP Operational Planning Process

SoS System of Systems

SWT Standard Widget Toolkit

TPTP Test and Performance Tools Platform

UML Unified Modeling Language

W3C World Wide Web Consortium

XML eXtensible Markup Language

XSD XML Schema Definition

48 DRDC Valcartier TM 2006-781

Distribution List

INTERNAL DISTRIBUTION

1 - Director General

3 - Document Library

1 - Head, System of Systems

1 - Philippe Charland (author)

1 - Dany Dessureault (author)

1 - David Ouellet (author)

1 - Michel Lizotte (author)

1 - Geneviève Dussault

1 - Michel Ducharme

1 - Head, Information and Knowledge Management

1 - François Lemieux

1 - Martin Salois

1 - Head, Decision Support Systems

1 - Bruno Gilbert

1 - Marc Lauzon

1 - Marc Grondin

1 - LCol Pierre Lefebvre

EXTERNAL DISTRIBUTION

1 - DRDKIM (PDF file)

DRDC Headquarters - 305 Rideau Street, Ottawa, ON, K1A 0K2

1 - Director Science and Technology Command, Control, Communications,
 Computers, Intelligence, Surveillance and Reconnaissance (DSTC4ISR)

DRDC Valcartier TM 2006-781 49

1 - Klaus Kollenberg (DSTC4ISR 3)

1 - Donna Wood (DSTC4ISR 4)

1 - Norbert Haché (DSTC4ISR SPO)

1 - Richard Lestage (Director Science and Technology Air 6)

50 DRDC Valcartier TM 2006-781

dcd03e rev.(10-1999)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(Highest Classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA

1. ORIGINATOR (name and address)
Defence Research and Development Canada Valcartier
2459, Pie-XI Blvd North
Québec, Québec
G3J 1X5 Canada

2. SECURITY CLASSIFICATION
(Including special warning terms if applicable)
Unclassified

3. TITLE (Its classification should be indicated by the appropriate abbreviation (S, C, R or U)
Opening up architectures of software-intensive systems: A first prototype implementation (U)

4. AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)
Charland, Philippe; Dessureault, Dany; Ouellet, David; Lizotte, Michel

5. DATE OF PUBLICATION (month and year)
 2007

6a. NO. OF PAGES
62

6b .NO. OF REFERENCES
59

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. Give the
inclusive dates when a specific reporting period is covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (name and address)
Defence Research and Development Canada Valcartier
2459, Pie-XI Blvd North
Québec, Québec
G3J 1X5 Canada
9a. PROJECT OR GRANT NO. (Please specify whether project or
grant)
15ak

9b. CONTRACT NO.

10a. ORIGINATOR’S DOCUMENT NUMBER
DRDC Valcartier TM 2006-781

10b. OTHER DOCUMENT NOS

N/A

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security
classification)

 Unlimited distribution
 Restricted to contractors in approved countries (specify)
 Restricted to Canadian contractors (with need-to-know)
 Restricted to Government (with need-to-know)
 Restricted to Defense departments
 Others

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally
correspond to the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is
possible, a wider announcement audience may be selected.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(Highest Classification of Title, Abstract, Keywords)

dcd03e rev.(10-1999)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(Highest Classification of Title, Abstract, Keywords)

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself.
It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin
with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified)
represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is
bilingual).

Although there already exist tools to assist in understanding the behavior of software systems when no complete and consistent
design models are available, these tools generate a large volume of information. One approach to deal with this problem is
information hiding. This technical memorandum presents a prototype which implements this technique to reverse engineer
dynamic models from Java software systems. These models are represented using Unified Modeling Language (UML) sequence
diagrams. Such diagrams show the interactions, in terms of messages or information transfers, between the operational nodes of
a system, arranged in a time sequence. Information hiding is achieved by reconstructing the sequence diagrams at various levels
of abstraction. The interactions between the operational nodes of a system can be displayed at a low level, i.e., object level.
However, related operational nodes can also be regrouped into higher level structures, i.e., packages. The proposed approach
was implemented in Eclipse, an extensible integrated development environment (IDE). The objective is to complement the
behavioral views reverse engineered by the implemented prototype with structure views generated by other tools.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document
and could be helpful in cataloguing the document. They should be selected so that no security classification is required.
Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be
included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific
Terms (TEST) and that thesaurus-identified. If it is not possible to select indexing terms which are Unclassified, the
classification of each should be indicated as with the title.)

Software architecture recovery, program comprehension, program understanding tools, reverse engineering, prototype.

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(Highest Classification of Title, Abstract, Keywords)

Canada’s Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

WWW.drdc-rddc.gc.ca

Defence R&D Canada R & D pour la défense Canada

	1. Introduction
	2. OASIS v1 Functionalities
	3. UML Sequence Diagrams
	4. Reverse Engineering of Sequence Diagrams
	4.1 Static Analysis
	4.1.1 Omondo EclipseUML
	4.1.2 Sequence Diagram Viewer NetBeans Module
	4.1.3 Limitations of Static Analysis

	4.2 Dynamic Analysis
	4.2.1 J2U
	4.2.2 The Eclipse TPTP Project
	4.2.3 Limitations of Dynamic Analysis

	5. Extraction of Dynamic Views in OASIS v1
	5.1 Instrumentation
	5.2 Logging Strategy
	5.3 Visualization
	5.3.1 Object Level Sequence Diagrams
	5.3.2 Package Level Sequence Diagrams
	5.3.3 Method Collapsing
	5.3.4 Searching
	5.3.5 Filtering

	5.4 Domain Knowledge Definition and Exploitation

	6. OASIS v1 Implementation
	6.1 Eclipse
	6.2 Infrastructure and Technologies
	6.3 Bytecode Instrumentation
	6.3.1 JRat
	6.3.2 The Eclipse TPTP Project
	6.3.3 XRat File Format

	6.4 SEQUENCE
	6.5 Integrating SEQUENCE into Eclipse
	6.6 Additional Libraries and Plug-ins
	6.6.1 Metrics
	6.6.2 Omondo EclipseUML
	6.6.3 The Eclipse JDT Subproject
	6.6.4 XSD
	6.6.5 Log4j

	7. Conclusions and Future Work
	8. References
	8.

